Course Code	Credit Hours
QR-101	3-0

Course Description

Quantitative Reasoning (II) is a sequential undergraduate course that focuses on logical reasoning supported with mathematical and statistical concepts and modelling / analysis techniques to equip students with analytical skills and critical thinking abilities necessary to navigate the complexities of the modem world. The course is designed to familiarize students with the quantitative concepts and techniques required to interpret and analyse numerical data and to inculcate an ability in students the logical reasoning to conshi.1ct and evaluate arguments, identify fallacies, and think systematically. Keeping the pre-requisite course of Quantitative Reasoning (I) as its base, this course will enable students further their quantitative, logical, and critical reasoning abilities to complement their specific major I field of study.

Text Book:

- Using and Understanding Mathematics: A Quantitative Reasoning Approach by J. O. Bennett, W. L. Briggs and A. Badalamenti
- 2. Discrete Mathematics and its Applications by Kenneth H. Rosen
- 3. Discrete Mathematics with Applications by Susanna S. Epp
- Applied Mathematics for Business, Economics and Social Sciences by Frank S Budnick
- 5. Elementary Statistics: A Step-by-Step Approach by Allan Bluman
- 6. Introductory Statistics by Prem S. Mann
- 7. Applied Statistical Modelling by Salvatore Baboncs
- 8. Barron s SAT by Shmvon Weiner Green, M. A and Ira K.Wolf

Reference Book:

Prerequisites:

Quantitative Reasoning-I

ASSESSMENT SYSTEM FOR THEORY

	Without Project (%)	With Project/Complex Engineering Problems (%)
Quizzes	15	10-15

Assignments	10	5-10
Mid Terms	25	25
Project	-	5-10
End Semester Exam	50	45-50

ASSESSMENT SYSTEM FOR LAB

Lab Work/ Psychomotor Assessment/ Lab Reports	70%
Lab Project/ Open Ended Lab Report/ Assignment/ Quiz	10%
Final Assessment/ Viva	20%

Teaching Plan

Week No	Topics/Learning Outcomes
1	Introduction and importance of logic, Inductive, deductive, and adductive
	approaches of reasoning
2-3	Propositions, arguments (valid; invalid), logical connectives, truth tables and
	propositional equivalences
4	Logical fallacies, Venn Diagrams, Predicates, and quantifiers
5	Quantitative reasoning exercises using logical reasoning concepts and
	techniques
6	Introduction to deterministic models
7	Use of linear function for modelling in real-world situations, Modelling with
	the system of linear equations and their solutions
8	Elementary introduction to derivatives in mathematical modelling
9	MSE
10	Linear and exponential growth and decay models, Quantitative reasoning
	exercises using mathematical modelling
11-12	Introduction to probabilistic models, Bivariate analysis, scatter plots
13	Simple linear regression model and correlation analysis
14	Basics of estimation and confidence interval, Testing of hypothesis (z-test; t-

	test)
15	Statistical inference in decision making
15	Quantitative reasoning exercises using statistical modelling
17-18	End Semester Exam

Practical: Nil